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Fractional Legendre transformation 
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NSW 2109, Australia 

Received 2 March 1995, in final form 21 June 1995 

Abstract. A new transformation is defined that wnnects a function and its Legendre bansform 
by means of a continuous free panmeter. The cyclic behaviour of wnsecutive Legendre 
transformations is reflected in the periodic dependence of the new transform on this parameter. 
This transformation opens new options wherever the conventional Legendre &formation is 
used (including mechanics, thermodynamics and optics) and is suggestively derived here by 
considering the geomehical-optics limit of a diffraction integral. The connection to a classical 
limit of the fractional Fourier~ transformation is also established and the mathematical and 
geometrical properties of the transformation are demonstrated. 

1. Introduction 

Legendre transformation is a standard mathematical tool with applications across a range 
of areas within physics. In thermodynamics [I], the internal energy of a system is a 
function of the extensive parameters volume and entropy. It is sometimes more convenient, 
however, to work with the intensive parameters pressure and temperature by using the Gibbs 
free energy. There are also mixed representations such as the enthalpy or the Helmholtz 
free energy-functions of P and S,  or V and T, respectively. Legendre transformation 
gives the connection between these four equivalent representations. In classical mechanics 
121 Legendre transformation gives the connection between the Lagrangian (as a function 
of generalized coordinates, velocities and time) and the Hamiltonian (as a function of 
generalized coordinates, momenta and time). 

In Hamiltonian optics [3] a system can be described by a characteristic function that 
specifies an optical distance, and the alternative forms for the characteristic function are 
connected by Legendre transformation [4]. The point characteristic represents the optical 
distance between two points as a function of their coordinates, while the angle characteristic 
corresponds to an optical distance as a function of the direction cosines of the entering and 
exiting rays. Mixed characteristics are functions of a combination of both position and 
direction variables. 

More generally, when the gradient of a function is of direct significance, the Legendre 
transformation is often a useful device that connects a discrete set of interchangeable 
representations for the function. A generalization of this transformation-termed the 
fractional Legendre transformation (mThiS developed here to provide a continuous 
connection between these representations. This idea was motivated within the context 
of optics where the new transformation has clear physical significance and immediate 
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applications. While the point and angle representations concern families of rays through 
a given point or normal to a given plane, the intermediate representations relate to more 
general families of rays that follow from ideas presented elsewhere IS]. Another application 
relates to avoiding the errors introduced by caustics, or classical turning points, in the 
semiclassical consbuction of propagators in wave optics and quantum mechanics. The 
standard semiclassical methods in these fields, respectively, are presented by Walther [6] 
and Maslov and Fedoriuk [7]. However, the exposition of the transformation itself is the 
purpose of this work. 

The FLT is defined in section 2 by reference to the Fresnel diffraction integral. A 
parametrized form of this integral is considered such that it contains as special cases 
both the Fourier and identity transformations. This idea is carried over to the Legendre 
transformation by using the stationary phase theorem. A simple geometrical interpretation 
for the FLT is presented in section 3, along with a description of the single-valued and multi- 
valued regions of the transform. A different approach is given in section 4 where the FLT 
is shown to be accessible as the solution to a first-order partial differential equation. Based 
on the characteristic curves of this equation, an alternative geometrical definition for the 
FLT that involves rotating the plot of the derivative of the original function is presented in 
section 5. In physical applications, this corresponds to a rotation in phase space. Different 
aspects of two particular examples are discussed in sections 2 through 5 to illustrate the 
properties of the FLT that are treated i,n~ each section. 

M A  Alonso and G W Forbes 
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2. Definition and integral transform connection 

The conventional Legendre transform of the function g can be obtained by first defining a 
new function Gc according to 

Gdx, P )  := g ( x )  - x p  (2.1) 
and then requiring that the partial derivative of Gc(x, p )  with respect to x vanishes: 

.%, p )  = g’(x) - p = 0. (2.2) ax 
If this relation is solved for x as a function of p and the solution written as x = X , ( p ) ,  the 
conventional Legendre transform Lg c p  then be defined by 

(2.3) 

When for a given value of p there is more than one solution for x in (2.3, the transform 
becomes multivalued. The conventional Legendre transformation exhibits the simple 
properties shown in table 1. (As pointed out below, these properties follow by analogy 
with the properties of the Fourier transformation.) 

The definition of X , ( p )  entails that aGC,lax evaluated atx = X&) vanishes identically, 
i.e. 

G ~ ( P )  = Q ( P )  := &,[X(P) ,  PI. 

(2.4) 
aGc 
-[Xc(P),  PI = 0. ax 

It now follows that the derivative of the transform satisfies 

Other properties follow similarly for the derivatives of the transforms of functions of more 
than one variable. For example, if a function g of x and y is transformed with respect to 
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x, the transform follows by simply considering Gc to be a function also of y in (2.1) and 
(2.2). The analogue of (2.3) then becomes 

(2.6) G ~ ( P ,  Y) := GcIXC(P, Y ) ,  P+ Y1 

aGc 
- 4 P ,  Y )  = - X d P ,  Y) 

and the partial derivatives of this trimform are similarly found to satisfy 

(2.7) au 

These relations are central in all applications of the Legendre transformation. For example, 
in classical mechanics, where g(4, q )  corresponds to the Lagrangian, and -G,(p, q )  is the 
Hamiltonian, (2.7) and (2.8) lead directly to Hamilton's canonical equations: 

( 2 . 9 ~ )  

(2.9b) 

The link between the Legendre and Fourier transformations can be seen by considering 
a complex function h of the form 

h(x) = A ( X )  exp[ig(xjl (2.10) 

where A(x) ,  g ( x )  and k are real-valued and A is well behaved and square-integrable. The 
Fourier transform of h can be written as 

(2.11) 
m 

k k p )  = [,A(.=) exp{*[s(x) - xplldx. 

Here, it may help to regard k and p as physical quantities. (In the optical context, k 
corresponds to wavenumber and p represents direction.) For large k ,  the fast oscillations 
of the exponential will lead to cancellation in the integral from any region that does not 
include a stationary point of the exponent. The stationary phase condition for x is precisely 
( 2 3 ,  and the bracketed term in the exponent of (2.11) corresponds exactly to the definition 
given in (2.1). Consequently, in the limit k + 00, the stationary phase theorem [SI states 
that f i  satisfies 

(2.12) 

That is, to within an additive constant, the phase of the Fourier transform of h is just the 
Legendre transform of the phase of h. Again, the stationary phase condition may give 
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multiple solutions and then the right-hand side of (2.12) must include a contribution from 
each. The phase of the individual contributions corresponds to the separate values of the 
Legendre transform that were mentioned following (2.3). 

Notice that this connection between the Fourier and Legendre transformations is 
responsible for the close similarity between some of the propeaies stated in table 1 and the 
well known properties of the Fourier transformation., For example, the last two properties 
in the table are derived by analogy with the convolution theorem and Parseval’s theorem. 
Also recall that it is the phase of a field that determines the wavefronts and these are the 
central features in the context of a classical (or geometrical optics) limit. 

In the same way, the stationary phase theorem can be used for the case of the Fresnel 
diffraction integral [9] .  This integral represents a well known solution for certain wave 
propagation problems, and it can be considered to be an integral transformation [lo]. The 
Fresnel diffraction integral gives an approximate model for propagating a wave field across 
a distance z from a plane where the field distribution is known. If this distance is set to 
zero, the Fresnel integral becomes an identity transformation (since it represents an exact 
solution of the paraxial wave equation), while for a large distance it approaches a Fourier 
transformation. 

M A  Alonso and G W Forbes 

The Fresnel diffraction integral for two-dimensional space can be written as 
-ik 112 m 

E(x’, z) = eikz (G) /- E(x ,  0) exp[(ik/k)(x’ -x)’]dx. (2.13) 

The awkwardness of considering a large propagation distance to approach the Fourier 
transformation can be avoided by including an additional quadratic phase term. For example, 
when the field at z = 0 is just a circular wave converging to the point with coordinates (0, f )  
and passes through a transparency with a transmissivity that corresponds to the function 
given in (2.10), (2.13) becomes 

1/2 m 
E(x‘, z) = Gkr (2) 1, A ( x )  exp[ik4(x, 2, z, f)] dx (2.14) 

2KZ 
where 

4(x, X I ,  z, f) := g(x )  - [zx’x - X I L  - x2(f - Z)/fl/(ZZ). (2.15) 

Notice that, when z is equal to f, the term in xz vanishes in (2.15) and the integral in 
(2.14) then takes the form of a Fourier transformation. Furthermore, when z approaches 
zero, the integral returns the original field, so this diffraction integral gives a parameterized 
connection between a function and its Fourier transform. 

Quation (2.15) can be put into a convenient generic form, by replacing the variable x’ 
by p := x‘/b, where b may be a function of some parameter that is yet to be defined, and 
then eliminating f and z by introducing a = (f - z)/bf, and = z/b 

(2.16) 1 -ab 
By analogy with the previous case, now consider using the stationary phase theorem (here, 
the geometrical optics limit) with the exponent presented in (2.16). That is, the condition 

0 
a 4  
ax -=  (2.17) 

is solved for x and the general form of a new transformation then follows when this 
expression is used to eliminate x from the right-hand side of (2.16). Evidently, this new 
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transformation is able to give a continuous connection between the Legendre and identity 
transformations. 

To derive a simple form that is appropriate for general application, the entities a, b 
and $ that appear in (2.16) are here parametrized in terms of a single entity 0, which then 
serves as a tuning parameter analogous to z in the Fresnel diffraction integral. With this 
simplification, the propagation distance, the focusing and the scaling of the argument of the 
transform are no longer independent. The task now is to find a suitable form for each of 
a@), b(0) and e(0) in order to give convenient properties to the new transformation. 

The Fresnel diffraction integral has an intuitive group property: if an arbitrary field is 
propagated through a distance z1, and the result is $en used as the input for propagation 
across a distance ZZ. the final result is the same as that found by propagating across ZI f z z  
directly. A property analogous to this additivity is required here of the new transformation. 
In particular, if the transform of g is written as Leg with values C(p, 0) = C&), this 
additivity requirement can be written as 

L p ( 4 g )  =&+sg. (2.18) 

Another key observation is that there is a cyclic behaviour on successive conventional 
Legendre transformations: a sequence of four transformations returns the original function. 
This means that the new transformation has a periodic dependence on the tuning parameter. 
The period is arbitrarily chosen here to be 2rr to give the tuning parameter an angle-like 
character: 

Le+?Jrg = Leg. (2.19) 

It follows from (2.18) that Le ,acts as an identity transformation when the tuning parameter is 
equal to zero. Also, since four consecutive conventional Legendre transformations represents 
a complete cycIe, Le behaves as a conventional Legendre transformation when 0 is equal 
to $7. These two observations can be stated formally as 

(2.20) 

(2.21) 

where the scale factor 1 is introduced for dimensional reasons. 

b(0) and $(e) must take the forms 
By using these constraints (i.e. (2.18) to (2.21)) it is shown in the appendix that a@), 

a(@) = b(0) = cos0 
5(0) =!sins. 

(2 .22~)  

(2.22b) 

With this, the method for applying CO (hencefore identified as the FLT) to a function g Can 
be summarized as follows. First, define G according to (2.16) and (2.22) as 

1 G ( x , p , 0 )  

and then require 

(2.23) 

which can be written as 

@‘(x) sin0 = p - x cos 0. (2.25) 
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If (2.25) is solved for x as a function of p and 0, and this solution is written as x = X ( p ,  0). 
&:eg is then defined by 

(2.26) 

It is interesting to consider the limits associated with the requirements stated in (2.20) 
and (2.21). For 0 = ir, (2.23) reduces to (2.1) as it must to give the conventional Legendre 
transformation. For 0 = E 3 0, (2.25) becomes, to first order in E, 

(2.27) 

M A  Alonso and G W Forbes 

G(p,  0) = Log@) := G I X ( P .  e), P. 01. 

eg'(X)E = p - x + O ( E ~ Z  
and the solution of this equation for x takes the form 

X ( P ,  E) = P - eg'(p)E + O(E~) .  

By using (2.23), (2.24) and (2.26), it now follows that G ( p ,  E) is given by 

(2.28) 

The error here is of order because, although aG(x,  p ,  0)/ax vanishes identically for 
x = X ( p ,  E), a2g(x, p ,  0 ) / a x 2  diverges like 1 / ~ .  Also notice that the right-hand side of 
(2.23) corresponds exactly to the exponent of the kernel of an integral transformation-the 
fractional Fourier transformation [Ill-which was introduced in the context of quantum 
mechanics as a tool for propagating wavefunctions in quadratic potentials. The FLT is 
associated then with the stationary phase limit of this transformation. 

Table 2. Pmpenies of fractional Legendre uansfomation, where g is a real function, 
r(x) := g(-x). r.(x) := g(x - a). h(x)  := x .  x ( x )  := xz .  and LI and c are constants. 

& r W  = &s(-P) = &+r~(P) 
Lecs(--sl(~) = -L-e&) 
& r . ( p ) = - ~ e g ( P - x x u c o s 8 ) - - ( p - ~ )  

&[g t c + d ] ( p )  = E + Leg@ - a t  sine) - =pcose + la2esinecose 
&{E + U K ) ( P )  = E @ ( % P  +[A (1 - 3) -O$$$]P2  

where @ := arcm [&I 
Some of the KT's properties are presented in table 2. These can be used to simplify 

the evaluation of the transforms of particular functions. Notice that the scaling properties 
of the conventional Legendre transformation given in the first two equations of table 1 are 
limited to a scale factor of -1 for the FLT. 

The partial derivatives of the transform with respect to p and 0 are found to satisfy 

(2.30~) 

Finally, if G ( p ,  0, y )  is the value of the transform of a function g of x and y with respect 
to x ,  then its partial derivative with respect to y is given by 

(2.31) 
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In applications of the FLT, (2.30~) and (2.31) play the role of the fundamental relations 
given in (2.7), and (2.8). For example, in classical mechanics, where g(4, q )  corresponds 
to the Lagrangian, C(p, 0, q)  corresponds to a generalized function that includes both the 
Lagrangian and (with a factor of -1) the Hamiltonian as particular cases. In this case 
(2.30~) and (2.31) lead to 

ac pcos0-q 
e sin B -(p.  aD 0 , q )  = 

where the Euler-Lagrange equation, namely 

(2.32~) 

(2.32b) 

(2.33) 

has been used in deriving (2.32b). For 0 = fz these equations are just Hamilton's c"zical 
equations (see (2.9)). However, as 0 + 0, the right-hand side of (2.3%) approaches the 
time derivative of the right-hand side of (2.32~). and this then returns us to the Euler- 
Lagange equation. 

Two examples are now used to illustrate these ideas. The same two examples are 
revisited at the end of the three main sections that follow. 

Example 2.1. Quadratic. Let g be a quadratic function of the form 
(2.34) 2 g(x )  = CO + C1x + c2x . 

The procedure described above leads directly to the result 
I ( ~ C ~ ~ C O S B  - s i n 0 ) p 2 + 2 e c , p - c ~ e Z s i n ~  

G(p,  0)  = - 2e 
+Co. (2.35) 

2C2.f sin 0 + cos 0 
That is, except for discrete values of 0, the ELT of a quadratic is itself quadratic in p .  Notice 
that the resuIt given in (2.35) can also be obtained by first evaluating the FLT of a constant 
function, and then applying the two final properties presented in table 2. 

It can be seen in (2.35) that the transform is ill-defined when the denominator vanishes. 
This happens when 0 satisfies 

1 
tan0 = 

2ec2 
(2.36) 

Although a clearer understanding of this property follows from the ideas presented in the next 
two sections, an intuitive explanation can be obtained from the diffraction analogy. For this 
value of 0, the quadratic phase of the transparency (namely the original function) combines 
with the quadratic phase of the input wave to place the focal position precisely at the plane 
of observation. The resulting distribution is then described by a delta function so the phase 
becomes ill-defined away from this point. Notice that the FLT of a quadratic function is of 
particular interest since the dependence of a typical Lagrangian on the generalized velocity 
is pqely quadratic. 

Example 2.2. Cosine. Like the conventional Legendre transformation, the FLT cannot 
always be carried out in closed form. For example, consider the function defined by 

g ( x )  = Acos(kx). (2.37) 
G(p,  0)  cannot be obtained in closed form for this case since (2.25) becomes transcendental, 
but G ( p ,  4.) follows from the multivalued conventional Legendre transform: 

GQ(P) = AcosIs (~) l+  P ( P ) / ~  (2.38) 
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where s ( p )  is one of the possible values of arcsin(p/Ak). For other values of 9,  a 
surprisingly complete description follows simply from the ideas presented in sections 3-5, 
and a clear map of the connection between g and Lg results. 

MA Alonso and G W Forbes 

3. Geometrical interpretation 

The conventional Legendre transform has a simple geometrical interpretation. According to 
(2.1) and (2.2), since p is the local slope of g, GC(x, p) can be interpreted as the intercept 
along the ordinate of the tangent to g at x .  It follows that Lg(p) = G,(p) corresponds to 
the intercept along the ordinate of the tangent to g that has slope p (see figure 1). 

Figure 1. Geometrical interpretation for the conventional Legendre transformation of a function 
6. 

To find an analogous geometrical interpretation for the FLT, it is convenient to express 
(2.23) in the form 

B(X, P, e )  = g w  - ~ ( x .  P, e) (3.1) 
where y ( x ,  p .  8) can be written as 

The equation y = y ( x ,  p ,  6') corresponds to a parabola in the ( x ,  y )  plane, and this curve 
is referred to in what follows simply as y .  The latus rectum-or 'width'-of y depends 
solely on 9, and the family of parabolae (each member corresponding to a different value 
of p )  for a given value of 8 is represented in figure 2. The vertices of these parabolae 
describe the quadratic shown as a broken line in the figure and henceforth referred to as 01. 

The equation of this curve is 

Considering figure 3 together with (3.1) and (2.24), G(p, 9 )  can be interpreted geometrically 
as the distance that the parabola with width specified by the value of 9 and vertex on the 
curve ci at the point specified by x = p/cos8, must be displaced vertically to become 
tangent at some point to g. This is illustrated in figure 3 for two values of p .  
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Figure 2. Family of parabolae y corresponding to a given value of 8, and their specific 
dimensions. 

Figure 3. Geometric interpretation for &g(p) = G(p, 8). represented here for two values of 
p by the length of the vertical chain lines. 

This geometrical interpretation behaves as would be expected in the limits 0 + 0  and^ 
0 --f 1.. In the first case, LI becomes Rat and the width of y goes to zero, so its vertex is 
always the tangent point to g, and G(p,  0) takes the value of g(p). ,On the other hand, as 
0 approaches 1.. the widths of a and y both diverge and, for all p, y crosses the origin. 
As y becomes infinitely wide, it tends to a straiglit line through the origin and its slope 
becomes p / i ,  so the displacement necessary to make y tangent to g corresponds to its 
final intercept along the ordinate in accordance with $e geometrical interpretation of the 
conventional Legendre transform. 

It is easy to see from the geometrical interpretation that a conventional Legendre 
transform is single-valued only if the original function has no inflection points. When 
inflection points are present, a distinct single-valued Legendre transform can be associated 
with every region in the function between adjacent inflection points. For fixed values 
of 8, the KT possesses similar properties that can also be appreciated by considering its 
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geometrical interpretation. 
For a given value of 8. the second derivative of y with respect to x equals -l/e tan$. 

Suppose that at some point say XO, the second derivative of g matches this value. The value 
of p for which the tangent of y is parallel to the tangent of g at xo is written here as PO. If 
at XO. Ig"(x)l increases with x, then there are (at least) two heights at which a parabola is 
tangent to g for every value of p lower than PO. This means that .Cog is multivalued for p 
less than po (see figure 4). If at 10, [g"(n)l decreases with x ,  then Cog is multivalued for 
p greater than PO. If g"(x) has either a maximum or a minimum at XO, then Leg remains 
single-valued, but its partial derivative with respect to p is discontinuous. It follows that, 
for a given 8, a well-defined segment of the transform is associated with each segment of 
g in which 
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As a consequence, no function has a transform that is well-defined for all 0. In the 
context of semiclassical propagation, po will correspond to a classical turning point in 
the corresponding representation. With an appropriate choice of 8, however, the FLT can 
obviate the problems in semiclassical propagation associated with turning points, and retain 
a singlevalued representation. 

Example 3.1. Quadratic. By using this interpretation, it is easier to see that the FLT of a 
quadratic is ill-defined for the valus of 8 specified in (2.36). At this value, g has exactly 
the same width as y .  Since these two curves can then be tangent for only one value of p, 
it follows that Log is ill-defined for allother values of p. 

Example 3.2. Cosine. The general appearance of the KT of this function can be visualized 
by means of the geometrical interpretation. In particular, condition (3.4) can be used to 
deduce the regions over which the transform is single-valued. In this example it follows 
that the transform will be multivalued when 8 satisfies I tan81 > 1/Ak2e. 

Figure 4. Fxample of a function g with multivalued &S. The pmbola y with axis at 
x = m/cosB matches the N T V L ~ ~  of 6 at the point where these WO curves are langent. 
There are two possible translalions of the y centred a1 x = p l / c o s B  that make it tangent to g. 
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4. FLT via characteristic curves 

The periodic dependence of the K T  on 0 suggdsts a graphical representation in polar 
coordinates. In view of the first property presented in table 2, a polar representation is 
fully consistent and can be presented as a conventional three-dimensional plot where the 
surface height represents the function value. The local behaviour of this surface is governed 
by the partial differential equation that follows when X ( p ,  0) is eliminated from (2.30~) 
and (2.306): 

Notice that any function that satisfies (4.1) is still a solution after an arbitrary rotation 
about the origin in the (p, 0) plane, but it is no longer a solution following a translation. 
Equation (4.1) takes the farm of the Hamilton-Jacobi equation for a classical harmonic 
oscillator, and this is consistent with the fact that the fractional Fourier transformation can 
be identified with the propagation interval for the quantum mechanical harmonic oscillator. 

Equation (4.1) offers an alternative approach to the FLT: this nonlinear partial differential 
equation can be solved by using g as a boundary condition at 0 = 0. To this end, the 
method of characteristics [12] describes the solution as a family of curves-the so-called 
characteristic curves. The form of these characteristic curves can be found by considering 
the geomehical interpretation of section 3. Suppose that g and its first derivative are known 
only at the point x = xo (see figure 5) .  Since only one parabola for every specific width 
can be tangent to g at this point, the transform can then be obtained for one value of p for 
each 8 .  This correspondence follows from (2.25): 

p(8, xo) = g'(xo)e sine + x0cos8. (4.2) 

This is the equation of the projection of the characteristic curves onto the ( p .  0) plane. Such 
projections are often called characteristics. The characteristics described by (4.2) are circles 
that intersect the origin. % 

9 
I 

Figure 5. Specific dimensions of a parahla y tangent to a segment of a function g at x = xg. 
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The value of the transform for points on these characteristics now follows from (2.26). 
(2.23) and (4.2): 

1 
G[p(B, XO). 03 = g(x0) - g'(xo)xosinB + -[x: - ( t g ' ( ~ ~ ) ) ~ ] c o s  0 sine. 

It can be shown from (4.2) and (4.3) that all the characteristic curves are ellipses with 
their minor axes parallel to the ( p ,  0) plane. Evidently, each characteristic curve is a set 
of points of the transform that are fixed by specifying the values XO. g(x0) and g'(x0). It 
follows from the rotational invariance of (4.1) that, if one value of the transform and its 
partial derivative with respect to p are known at some point, the value of the transform 
can be inferred over the whole characteristic, Therefore the characteristics cannot intersect 
within the single-valued regions of the transform, because this would imply independent 
specifications for the value of Leg at such a point 

Equations (4.2) and (4.3) give aparametric representation of the K T  and this is especially 
valuable for functions whose transform cannot be Written in closed form. Furthermore, 
this method makes it straightforward to construct the transform corresponding to any finite 
segment of the function g, and for any point in the transform plane it allows the identification 
of the associated point of g. 

Example 4.1. Quadratic. Figures 6(u) and (b )  show the characteristics for a quadratic, 
with and without a linear term, respectively. From these diagrams it is easy to identify the 
direction in which Log is ill-defined. 

(4.3) I I 2t 

I 

Figure 6. Characteristics of Log for: ( U )  g(r )  = Czx2 and (b) ~ ( x )  = Clx + Czx2, where e 
was chosen to be 1/Cz. 

Although (2.35) gives an expression for the transform of a quadratic in closed form, 
it is interesting to plot the transform by means of the parametric solution, showing the 
characteristic curves. This is shown in figures 7(u) and (b )  for the same two quadratic 
expressions used in figures 6(u) and (b).  Notice that in the absence of the linear term, 
G(O.6') does not depend on 0 ,  but when C1 # 0, the plot of G(p,  e )  in the neighbourhood 
of the origin resembles a spiral staircase. This is a general property of the ET: if the 
derivative of the original function vanishes at x = 0, then G(O,0) (or at least one of its 
values) is independent of 0 .  

Examgle 4.2. Cosine. The diagram of the characteristics for g(x)  = A cos(kx) is shown in 
figure 8. Notice that the characteristics cross only in the regions where Leg was predicted 
to be multivalued. Log can now be plotted by using the explicitly parametric prescription 
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(e (b) 

Figure 7, Three-dimensional plot of Cog for: (a) g(x) = Czx’ and (b) g ( x )  = Clx + Czx2, 
for the same choice of P. as in fi, ’ 6. The radial distances in the (p,  6’) plane correspond 
rspectively to the dimensionless parameten plxo in (a) where xo is an arbitrary normalizing 
constant, and C z p l C ~  in (b). Notice that lhe characteristics are shown here as the projection of 
the characteristic c w e s  of Leg on10 the (p. 8 )  plane. 

given in (4.2) and (4.3). However, the complexity of the resulting surface makes it difficult 
to appreciate in a single plot.. Instead, sections of the surface are shown in figures 9@), 
(b) and (c) for selected values of 8, where it can be seen that the transform is multivalued 
for B greater than arctan(1jAk’L) = n/4 here. Figure 9(c) shows the case corresponding 
to the ordinary Legendre transform (0 = 4.) where Leg becomes infinitely valued in the 
region -1 < kp < 1 and not defined elsewhere. It also shows the correspondence between 
different segments of the transform and the generating segments of the original function. 

n=wl 

Figure 8. Characteristics of Cog for ~ ( x )  = Acos(kx), where e was chosen to be l /Ak2.  
Notice that these c w e s  only intersect in the regions [z/4,3x/41 and I5x/4,7x/41. 

Figure 9 gives a clear illustration of the continuous transition between the strikingly 
different functions given in (2.37) and (2.38). In the multivalued regions, Cog exhibits a 
series of cusps. If the function represents a principal function in mechanics or a characteristic 
function in optics, the cusps are associated with caustics (or, more generally, catastrophes). 
As is evident in figure 9, catastrophes are representation dependent and, because the n T  
allows the representation to be varied continuously, an optimal new representation in the 
classical domain can now be found that gives the most accurate results in semiclassical 
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'. / 

Figure 9. Lag for g(x) = Acos(kx), for the same choice of e as in figure 8, plotted for: (a) 
8 = 0. n/8 and x/4. where &eg is single valued (notice the kinks in the plot for 0 = ~ 1 4 ) ;  
(b) 8 = Sa/16, 3nf8 and 7x116, where the presence of swallowtails make Lag multivalued; 
(c )  B = xf2 correspondent to a conventional Legendre ansfomtion,  where the transform is 
only defined in the interval I - l fk .  I lk] ,  in which it is infinitely-valued. The correspondence 
between the segments of g(x )  and its conventional Legendre m s f o r m  is illustrated in ( E )  by 
the different line styles. 

analysis. From the novel classical representation, a fractional Fourier transformation can be 
used to move any desired representation within the wave domain and this process is to be 
discussed in detail in a separate paper. 

5. The FLT identilied as a rotation 

Equation (4.2) describes the shape of the characteristics over the (p,  6') plane. Since all 
characteristics are circles that intersect the origin, each of them can be characterized uniquely 
by specifying the location of the point diamemcally opposed to the origin (see figure 10). 
The locus of this family of points is referred to here as thefundamental curve since it gives 
a complete description of all the characteristics, and therefore of Log (to within an additive 
constant). To find an equation for the fundamental curve, it is convenient to use a Cartesian 
coordinate system in the ( p ,  e)  plane, where the x and y axes coincide with the 8 = 0 and 
fr lines respectively. In this system, (4.2) can be rewritten as 

(2x - X0)2 + (2y - eg'(Xo))* = Xo' + [lg'(xo)l2. (5.1) 
By considering the coordinates of the centres of these circles, the equation for the 
fundamental curve is found to be 

y = tg ' (x ) .  (5.2) 
Equation (5.2) states that the partial derivative of g(p) = G ( p ,  0) with respect to p 

is proportional to the function describing the fundamental curve in a Cartesian coordinate 
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Figure 10. Definition of the fundamental curve as the locus of the points on the characteristics 
that are diametrically opposed to the origin. 

system aligned to the 6 = 0 line. Since the general properties of Log are invariant under 
rotations, it follows that the p partial derivative of G ( p ,  6') is necessarily proportional to the 
function that describes the fundamental curve in a Cartesian reference frame (2,F) oriented 
at the angle e. That is, the equation of the fundamental curve in this reference frame is 
given by 

(5.3) 

That the fundamental curve is related to the partial derivative of the transform with 
respect to p for any value of 8 suggests a new prescription for generating the FLT: for any 
fixed value of e, Leg can be found by rotating the plot of g'(n) by -0 (after scaling by e )  
and then finding the primitive (i.e. the indefinite integral) of,the resulting curve. In fact, the 
prescription for the FLT given in (2.23) through (2.26) can also be derived in this fashion. 
Strictly speaking, this approach leaves an additive, arbitrary function of e on the right-hand 
side of (2.23), since G ( p ,  e) is found here from its partial derivative with respect to p.  This 
additive function must be constant, however, if the transformation is required to exhibit 
the properties of additivity and periodicity, and i t s  value must be chosen such that G ( p ,  0) 
matches g(p). 

This particular interpretation offers new insights. For example, the fundamental curve 
gives an alternative way of finding the values of 0 at which Log is multivalued. For 
some values of 0, the fundamental curve represents a multivalued function when referred 
to the corresponding rotated Cartesian reference frame. Since the fundamental curve is 
proportional to the p partial derivative of G ( p .  e), this function must itself he multivalued 
at these values of 8. 

This association of the FLT with a rotation resembles the interpretation of the fractional 
Fourier transformation given by Mustard [13] and Lohmann [14], who consider a rotation in 
phase space of the Wigner distribution of the original function. For slow phase and amplitude 
variations, the Wigner distribution tends to a delta function with an argument given by the 
 difference^ of the first derivative of the phase and the frequency (or momentum) variable 
[15]. Since g is the phase function in this context, the plot of the delta function in phase 
space matches our fundamental curve. 
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Example 5.1. Quadratic. The fundamental curve for a quadratic is just a straight line with 
slope m = ZCz. This line becomes vertical when the reference frame is rotated by the 
angle given in (2.36) and Log is then clearly ill-defined. 

Example 5.2. The fundamental curve of this function is simply given by 
y = -Aklsin(kx). This function becomes multivalued when referred to a coordinate 
system that is inclined at an angle 8 that satisfies [tanel > 1/Ak2e. This criterion is 
consistent with those derived by reference to characteristics and to geometric interpretation, 
and the process of integrating under the fundamental curve gives an alternative derivation 
of the results presented in figure 9. 

MA Alonso and G W Forbes 

Cosine. 

6. Concluding remarks 

As pointed out in section 2, the FLT is associated with the stationary phase limit of the 
fractional Fourier transformation and therefore provides an approximation associated with 
the classical limit in each of the applications of the fractional Fourier transform which have 
been reported in disparate contexts [16]. For example, it was indicated in section 4 that the 
FLT can be used to avoid the errors introduced by caustics in the semiclassical construction of 
propagators for quantum mechanics and in the semi-geometrical construction of propagators 
for wave optics. It will also be shown elsewhere that the FLT extends the applicability of 
the ideas and methods associated with the so-called wave aberration function of classical 
optics that, to this point, have been well matched only to systems with rotational symmetry. 

The scale factor e is carried explicitly throughout this work. This constant fixes the 
metric that is essential to define rotation in phase space, but its magnitude remains arbitrary. 
A similar indeterminacy is present in the context of the fractional Fourier transform, although 
it is typically suppressed in much of the work in this area. A suitable choice for such a 
constant must depend on the specific application. For example, in the case of the FLT 
of the point characteristic in geometrical optics, l has dimensions of length and the focal 
length of the system is one natural choice. More generally, choices like e = [g"(O)]-' 
and l = g(O)/[g'(O)]' are dimensionally sound. It is clear, however, that neither of these 
choices is workable for all cases. For any particular application the resolution of this issue 
amounts to developing a dimensionless treatment. In the case of semiclassical propagation, 
the choice of e is ultimately of no significance provided that the same value is used in 
the fractional Fourier transform when changing to the desired representation in the wave 
domain. 

The basic idea of the fundamental curve and the observations about rotation in phase 
space lead to effective methods to be applied in the investigation and evaluation of the 
fractional Legendre transformation that has been defined here. Further, the form of the FLT 
of any particular function is also immediately accessible from the parametric expression 
that follows from the characteristic curves discussed in section k v e n  when the transform 
cannot be evaluated in closed form. Another central result of this work is that the particular 
quadratic form used in the definition of the FLT in (2.23) is seen to be the only possible one 
that admits a connection between a function and its Legendre transform and exhibits the 
properties of additivity and periodicity. While the FLT could have been defined arbitrarily 
from the stationary phase limit of the fractional Fourier transform, the approach taken in 
section 2 starting from the Fresnel diffraction integral allows this uniqueness proof and 
provides insight into the FLT's properties and applications. 
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Appendix. Parametric form of the coefficients a, b and 

Applying (2.17) to (2.16) gives rise to a relation of the form 

P = a(@x +W)g ’ (x ) .  (AI) 
The solution to this relation for x in terms of p and 0 is written here as x = X ( p ,  e )  and 
the transform is then given by 

To meet equation (2.18), the transform of Cog itself must now be considered. If the new 
independent variable is written as U ,  a repeated application of (2.16) then gives rise to 

} (A31 
- 1 1 
P ( p , 8 , ~ , 4 ) = G ( p , @ - -  {PO - $ ~ U ) P ~  + b(4)021 U@) 

and p is now to be eliminated by using the condition Fa t  ac(p ,  8, (r, @)/ap  vanishes. This 
condition can be written as 

It follows from (A2) and the definition of X ( p ,  0) that aC(p, @)lap  satisfies 

The expressions on the right-hand sides of (A4) and (A5) must be identical. This condition 
takes the form 

The relation between U aid the original variable x~now follows upon eliminating p from 
(A6) by using (Al): 

0 = [ $$[a(@b(@) - 11 + 44)a(0)) x + It(@)b(e) + a($)t(e)Id(x) .  (A7) 

(A7) must be analogous to (AI) since they both express the relation between the variable 
of the mnsform and the variable of the original function. It follows that the requirement 
of additivity states that (A7) must be able to be written as 

(As) 
For (A7) and (AS) to be equivalent for an arbitrary choice of g ( x )  and for all values ofx, 
0 and 4, the coefficients of x and gl(x) must be identical in the two expressions and this 
gives the key constraints on a, b and 5 :  

U = a(0 + 4)x + $(e + C)g’(x). 
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If b(0) is eliminated from (A9) and (AlO), it is found that a and { satisfy 

((0 + m e )  - w)  = a(e +MO).  (All)  

Setting # to zero in equation (AI 1) leads to ((0) = 0, while setting 0 to zero gives a(0) = 1. 
Finally, taking # to be equal to -0 reveals that { must be odd {(e) = -((-e). Now, 
returning to (A10) and taking # to be -0 leads to b(0) =a(-@), so (A10) can be rewritten 
as 

w a ( - ~ )  + a ( m ( 0 )  = ((0 + 4). (A121 

Equating the second partial derivative with respect to # of both sides of (A12) gives 

t " ( m - e )  + a " ( ~ ( e )  = t"(e + #). (A131 

The choice # = 0 now gives a simple differential equation for e:  
a"(o){(e) = ("(e) (A14) 

where the initial condition is given above (namely ((0) vanishes). The solution to this 
equation is 

((0) = CI sin m0 ( ~ 1 5 )  

where m = m. Now, if 0 is taken to be -4 in (A13). it follows~that a satisfies 

m2a(#) +a"(#) = o 
where, again, the initial condition was derived earlier: a(0) = ~ l .  The general solution is 

a@) = cosm0 + C2sinm0 (A171 

and, since b(0) = a(-0) = is given by 

b(0) = cosm0 - Czsinme. (-418) 

The values of C1 and C2 can be found from (2.21). This equation establishes that, 
for 0 = $7, the FLT must behave as the conventional Legendre transformation. This 
is equivalent to requiring that (2.16) takes the form of (2.1) for this value of 0 and the 
following relations emerge: 

where e is introduced to ensure correct dimensions. The sum of (A19) and (A20) leads to 
the result m = 2n + 1, for some integer n. If Log is not to coincide with the conventional 
Legendre transform of g in the interval 0 < 0 fn, it follows that n must be equal to zero. 
Therefore m is unity and, according to (AZl), C1 is then precisely e. Finally, subtracting 
(A20) from (A19) leads to C2 = 0, and it follows that the dependence of a, b and ( on the 
tuning parameter is necessarily given by: 

a(@) = b(0) = cos0 
{(e) = esine. 

(A22a) 
(A22b) 
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